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An optical analysis of eccentric photorefraction (photoretinoscopy) of astigmatic eyes is presented. The size
and the angular tilt of the dark crescent appearing in the subject’s pupil are derived as a function of five vari-
ables: the ametropia of the eye (Dym, D.y, axis), the eccentricity of the flash, e, and the distance of the camera
from the subject’s eye, d.. A simplified solution and a solution of the inverse problem, which enable one to cal-
culate the degree of ametropia from the size and the tilt of the crescent, are also presented. If the crescent is
smaller than the pupil, both the size and the tilt of the dark crescent are independent of the pupil size. The
angular tilt of the crescent is also independent of the eccentricity. Characteristic changes of the crescent as a
function of the cylinder axis are illustrated for compound and mixed astigmatisms. The validity of the theo-
retical predictions was experimentally verified on a model eye.

1. INTRODUCTION

Eccentric photorefraction, also termed photoretinoscopy,
is an objective method for estimating ametropia that
bears many similarities to retinoscopy and to the working
principle of contemporary automated eye refractors. In
retinoscopy the examiner observes the movements of a
crescent-shaped light reflex appearing in the pupil. De-
pending on the direction of motion of the reflex, the ex-
aminer adds plus or minus lenses to find the neutral point.
The automatic eye refractor manufactured by Humphrey
Instruments utilizes stationary light sources situated im-
mediately adjacent to the optical axis. A four-quadrant

detector positioned at the optical axis determines in

which part of the pupil a crescent appears. The position
of the crescent is used to control a Badal optometer and a
set of variable Stokes cylinder lenses to compensate for
the ametropia.

In contrast to these two compensation (nulling) tech-
niques, photoretinoscopes are used to estimate the magni-
tude of the ametropia from the absolute size and shape of
the light reflex in the pupil. Since no attempt is made to
neutralize the ametropia, this method may never yield the
accuracy of retinoscopy.! However, it has the unique ad-
vantage that the ametropia of both eyes can be deter-
mined at the same time, thus guaranteeing equal states of
accommodation. This advantage is especially important
for infants or young children without cycloplegia.

After the publication of the research of Howland and
Howland® and Howland et al.? on the isotropic photore-
fractor, in which the observation and the illumination
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paths are coaxial, several different devices appeared that
incorporated an eccentrically mounted light source.
Kaakinen®® constructed a photorefractor by placing an
electronic flash unit just outside the entrance pupil of a
100-mm objective attached to a 35-mm still camera. Hay
et al.” employed a 1000-mm catadioptric lens and an elec-
tronic flash. A similar method was subsequently used by
Day and Norcia® and Norcia et al.? Molteno et al.’® de-
signed a photographic objective in which the first compo-
nent of the lens formed the limiting aperture of the system,
around which was placed an annular flash. Bobier and
Braddick placed a fiber-optic bundle near the entrance
pupil of a /2.5 105-mm lens attached to a video camera.
Schaeffel et al.'* and Angi and Cocchiglia®® presented
infrared photoretinoscopes that use high-output light-
emitting diodes in combination with a video camera. This
technique has been fruitfully applied for the study of the
development of myopia (Schaeffel and Howland*).

A number of different names have been suggested
for these photographic refraction techniques based on
Foucault’s knife-edge test’®: static photoskiascopy,’® ec-
centric photorefraction, paraxial photorefraction,’” and
photoretinoscopy.'2®

Several ray-tracing analyses of knife-edge photorefrac-
tors have appeared.""'® However, these analyses are re-
stricted to special cases, namely, a spherical ametropia, or
an astigmatic error, with its main meridian either parallel
or perpendicular to the camera-flash axis. These analy-
ses cannot explain the behavior of the crescent in an
astigmatic eye with an oblique axis because such a refrac-
tive error gives rise to an oblique, tilted crescent. The
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pupil plane

Mﬁsh
Fig. 1. Photorefractor with a light source mounted at an eccen-
tricity e below the entrance pupil (EP) of the camera. The dia-
gram denotes the rotating x-y coordinate system used in
Appendix A.

analytic derivation presented below is a solution for the
general case and enables one to explain the behavior of
the crescent for all forms of refractive error.

2. BASIC PREMISE

We consider a photorefractor as illustrated in Fig. 1. The
border of the entrance pupil (EP) of the camera adjacent
to the flash is assumed to be a straight horizontal line at
an eccentricity e above the flash. We sometimes refer to
the straight horizontal border as knife edge. The flash is
assumed to be a point source located on the optical axis.
This geometry closely resembles the infrared photo-
retinoscope of Schaeffel et al.** but differs from the design
of other existing photorefractors. These existing photo-
refractors use not a straight border but the circular edge
of the camera aperture as the occluding edge.

The derivation makes use of the following approxi-
mations:

(1) The optical system of the eye is approximated by a
thin lens.

(2) Spherical aberration and other optical errors are
neglected.

(3) For convenience, the eye is considered an air-air
system, so that the object and the image focal lengths
are equal.

(4) The diameter of the EP of the camera is assumed
to be large.

3. SPHERICAL AMETROPIA

The image-forming geometry of a knife-edge photorefrac-
tor is plotted in Fig. 2 for a myopic eye. A similar, but
slightly incorrect, diagram has already been published.”
The size of the dark crescent, DCR, in the pupil of a
rotationally symmetric eye can be derived from Fig. 2
by an elementary analysis of similar triangles (see also
Bobier and Braddick). The size of the dark crescent is

DCR = e/(d.Dy — 1), 1)

where e denotes the eccentricity of the flash. Dgy, is the
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refractive power of the lens that would be required to cor-
rect the eye’s spherical ametropia (myopia requires a
negative lens). The distance of the camera from the sub-
ject’s eye, d., is negative because it is measured against
the conventional direction of light propagation. DCR is
positive when the eye is myopic relative to the camera dis-
tance. The positive sign indicates that the dark portion
of the crescent appears on the side of the camera lens (in
the upper part of the pupil for the arrangement indicated
in Figs. 1 and 2). DCR is negative in the case of a hyper-
opic eye, indicating that the dark crescent appears on the
side of the flash.

When the photoretinoscope is used to determine the re-
fractive state of an eye having an astigmatism with or
against the rule (cylinder axis ¢ = 0° or « = 90° in minus-
cylinder form), the crescent size can be obtained from a
modified Eq. (1) because the horizontally aligned refractor
is sensitive to the ametropia only in the vertical main
meridian of the eye.

In the case of an astigmatism with the rule, the vertical
meridian is the principal meridian with the greater re-
fractive power. This meridian is corrected by a lens with
power Dgy, + Dy, where Dy denotes the magnitude of the
correcting minus cylinder, and the dark crescent size
DCRI1 is given by

DCR1 = e/[dc(Dsph + -Dcyl) = 1]- (2)

Given an astigmatism against the rule, the dark crescent
size DCR2 is

DCR2 = e/(d.Dgn — 1). ' (3)

In these special cases the border of the crescent is perpen-
dicular to the line connecting the centers of the flash and
the camera lens.

Note that the size of the dark crescent is independent of
the pupil size. Thus the pupil size can be omitted in the
algebraic formulation of the problem. However, pupil size
is not irrelevant. In practice, it is normally easier to mea-
sure the size of the bright crescent. Furthermore, pupil
size is an important constraint on the sensitivity and the
accuracy of the method (see Section 8).

camera EP pupil- / lens retina

(=} @,

-3 de

Fig. 2. Crescent formation with a myopically defocused eye. A
flash source is positioned on the optical axis at a distance (—)d.
in front of the eye. The eye is myopically focused with respect to
the flash. The flash is imaged to a point in front of the retina
and generates a blur circle with diameter AB on the retina. The
lower boundary point of the blur circle B is imaged to a corre-
sponding point B’ in the far point plane outside the eye. Of all
rays passing through B and B’, only those inside the dotted area
can enter the entrance pupil of the camera. They create a bright
crescent of size PQ in the lower part of the pupil.
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Fig. 3. (a)-(c) Polar diagrams of the crescent vector (DCR,y) for three astigmatic ametropias and parametrically varied cylinder axis.
The size of the dark crescent is indicated by the distance of the circumference of the circle from the origin. The numbers on the
circumference of the circle denote the cylinder axis @. The arrows indicate the dark crescent for a cylinder axis of 30°. For the special

case of an astigmatism with or against the rule (@ = 0° or @ = 90°), a horizontal border of the crescent is obtained (y = 0° or y = 180°).
In this case the dark crescent size is DCR1 or DCR2 as defined in Egs. (2) and (3), respectively. The question of whether the crescent
will be visible can be answered by drawing a circle with a radius equal to the pupil diameter around the origin [see the scale in (¢)]. Only

those conditions that generate a crescent vector that lies inside the pupil will create a visible crescent. (d)-(f) Polar diagrams of the

transformed crescent vector (1/DCR,y). Ametropias are as in (a)-(c).

of ametropia.

4. RAY-TRACING APPROACH TO
ASTIGMATIC EYES: NUMERICAL RESULTS

In the case of an oblique astigmatism the crescent is tilted,
and the size of the dark crescent has an intermediate
value between DCR1 and DCR2.

With the rigorous analytic ray-tracing approach, de-
scribed in Appendix A, we derive the size DCR and the tilt
v of the dark crescent as a function of six variables,
namely, (1) the spherical and (2) the cylindrical powers of
the corrective spectacle lens at vertex distance 0, D, and
Dy1; (3) the axis of the cylinder, a; (4) the eccentricity of
the flash from the camera, e; (5) the radius of the pupil,
R,; and (6) the distance d. of the camera from the subject’s
eye:

(DCR,y) = [(Deph, Deys, o, €, Ry, d.c). 4)

For each set of input data we obtain a pair of data forming
a vector with magnitude DCR and phase angle y. A con-
venient way to illustrate the behavior of the dark crescent
is to draw the vector in a polar diagram for a given set of
input data. This has been done in Figs. 3(a), 3(b), and
3(c) for a fixed camera distance of —1 m, an eccentricity
of 10 mm, and ametropias of 0.0 DS, —4.0 DC; 1.0 DS,
—4,0 DC; and 4.0 DS, —4.0 DC, respectively. In each
panel the axis of the cylinder axis was varied parametri-
cally from 0° to 180°.

The cylinder axis now varies in an orderly manner independent

The polar diagrams in Figs. 3(a)-3(c) show that the vec-
tor (DCR, v) approaches a perfect circle for a fixed refrac-
tive power and varying cylinder axis. The x coordinates
at the right-hand and left-hand x intercepts of the circle,
DCR1 and DCRZ2, define the size of the crescent for an
astigmatism with or against the rule. DCR1I and DCR2
are numerically equal to the results obtained with the
basic Eqgs. (2) and (3). A positive x intercept denotes that
the respective principal meridian is myopic with respect
to the camera; a negative x intercept is generated by a
hyperopic principal meridian.

We can answer the question as to whether a crescent
appears in the pupil from Figs. 3(a)-3(c) for any given
pupil size simply by drawing a circle with a radius equal to
the diameter of the pupil around the origin. All condi-
tions that create a dark crescent vector (DCR, y) that lies
fully inside the pupil circle will give rise to a visible cres-
cent. All conditions generating a crescent vector that
points to a locus outside the pupil circle show a totally
dark pupil because the dark crescent size DCR is larger
than the diameter of the pupil.

The circle described by the dark crescent vector is cen-
tered at the origin in the case of a symmetric mixed astig-
matism [Fig. 3(b)]. This placement means that the size
of the crescent does not change with varying cylinder
axes. A crescent of constant size appears at all angles «
and rotates along the rim of the pupil. [To avoid confu-
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sion, we should note that the ametropia of 1.0 DS, —4.0 DC,
assumed in Fig. 3(b), represents a symmetric mixed astig-
matism with respect to the camera because the assumed
distance of the camera (—1 m) is equivalent to a myopia of
—1 DS. Thus the center of the dead zone of the photo-
refractor is located at —1 DS.]

The numbers at the circumference of the circle denote
the values of the cylinder axis . They enable one to com-
pare the pace at which the tilt of the crescent changes. It
is obvious that a simple relationship between the cylinder
axis and the tilt of the crescent exists in symmetric mixed
astigmatism [Fig. 3(b)]. In this case the tilt of the cres-
cent is always equal to exactly twice the cylinder axis. In
Fig. 3(a), which was calculated for an asymmetric mixed
astigmatism, the tilt of the crescent rotates by a large
amount (90°) when the cylinder axis « rotates from 90° to
60° and decelerates its rotational speed with decreasing
cylinder angle.

In both Figs. 3(a) and 3(b) the crescent rotates through
the full range of 360° when the cylinder axis varies from
0° to 180°. This means that the dark crescent is located
in the upper part of the pupil at @ = 0° and rotates counter-
clockwise along the rim of the pupil with increasing
cylinder axis. This behavior is typical for a mixed
astigmatism.

In a compound astigmatism [Fig. 3(c)] the tilt of the
crescent vy is always smaller than 90° because the circle
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Fig. 4. Tilt of the crescent as a function of the cylinder axis.
The spherical power of the corrective lens changes parametrically
while the cylinder power is held constant at —4 D. The camera
distance was assumed to be 1 m. An eye having an ametropia of
—1 D would be in focus with respect to the camera plane. Thus
an astigmatic ametropia of +1 DS, —4 DC, having a spherical
equivalent of —1 DS, is a symmetric mixed astigmatism with re-
spect to the camera distance. The behavior in five distinct re-
gions is explained in the text.
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lies entirely on one side of the coordinate system. In the
example in Fig. 3(c) the angle of the crescent deviates only
by less than 45° from the horizontal axis and changes in a
scissorlike movement against the rotating cylinder axis.

Figure 4 summarizes further details of the behavior of
the tilt for a number of astigmatic ametropias. The cylin-
der power was kept constant at —4 DC. The spherical
power was varied parametrically from —6 to +8 DS. All
curves are plotted as a function of the axis of the correc-
tive minus cylinder. The graph is rotationally symmetric
with respect to the point (a = 45°y = 90°).

Figure 4 shows five distinctly different regions:

(1) In the region of compound myopic astigmatisms,
the tilt of the crescent is always smaller than the cylinder
axis. When the cylinder axis is rotated through 90°, the
tilt of the crescent initially follows the rotation but even-
tually falls back to 0° tilt.

(2) In the case of a simple myopic astigmatism, the tilt
is always identical to the axis of the cylinder.

(3) In the region of mixed astigmatisms the crescent
always rotates faster than the cylinder axis. When the
cylinder axis is rotated through 90°, the tilt of the crescent
rotates through a full 180°. In the case of a symmetric
mixed astigmatism the crescent rotates at exactly twice
the rate of the cylinder axis.

(4) The tilt is equal to 90° + a for a simple hyperopic
astigmatism.

(5) The tilt is always larger than 90° + « in cases of
compound hyperopic astigmatisms.

In the case of ametropia close to a simple astigmatism
with respect to the camera distance, the tilt of the crescent
can never be seen near the two discontinuities at (a =
0°y = 90°) and (a = 90°y = 90°), where the meridional
refractive error is zero and the dark crescent size grows
beyond all boundaries. The absence of the crescent could
be mistaken as evidence for an emmetropic eye, but actu-
ally the dark pupil is simply a consequence of the absolute
insensitivity of knife-edge photorefractors to refractive
errors in the axis orthogonal to the camera-flash axis.
The extent of this angular dead zone depends mainly on
the eccentricity e, but it also depends on the linear dimen-
sions of the flash tube and the size of the EP of the camera
(see Section 8). It should be evaluated experimentally for
the actual geometry of the photorefractor.

5. SIMPLIFIED FORWARD SOLUTION

From the behavior of the size and the tilt of the dark cres-
cent described in Section 4, a simplified solution can be
derived. As is shown in Figs. 3(a)-3(c), the polar diagram
of the crescent approaches a perfect circle, with its
x intercepts, DCR1 and DCRZ2, being defined by the re-
fractive powers in the two respective principal meridians.
The starting point for the simplified solution is the fact
that the polar diagram can be made symmetric with re-
spect to the cylinder axis by the transform

r' = 1/DCR, Y = . (5)

This transformation replaces the size of the dark crescent
by its inverse and leaves the angle of the crescent unal-
tered. The effect of this transformation is illustrated
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in Figs. 3(d)-3(f). The transformed polar diagram
(1/DCR, v) is also a perfect circle, but now the cylinder
axis a rotates always at a constant speed around the cen-
ter of the circle. After elementary operations, the center
of the transformed circle is found to be situated at

(2 1 _ g 1, _1)
Fm = (DCRI * DCR2)/2 = (D“"’ * 2_D""‘ dc)
(6)

Thus the center of the transformed circle is located at a
position proportional to the spherical equivalent, Dy, +
(1/2)D.y, corrected for the distance of the camera 1/d..
The radius of the circle is

e (L1 _ 3Dy,
R "(Dcm DCRZ)/ 2= ™

The radius of the circle in the transformed coordinate sys-
tem is independent of the spherical power and propor-
tional to the power of the cylinder.

Since the cylinder axis rotates at a constant speed, the
transformed circle is completely described by its paramet-
ric form

x' = R'cos(2a) + x.’, (8)
y' = R'sin(2a). 9)

Now, it is possible to calculate the absolute value of the
dark crescent DCR and the tilt y of the crescent from

'DCR = 1/(x"* + y?)", (10)

vy = arctan(y/x'). (11)

After inserting Egs. (6)-(9) into Egs. (10) and (11), we find,
after elementary operations, the following general expres-

sions for the size and the tilt of the dark crescent as a
function of an arbitrary ametropia

d? 1\2 D 1
|DCR| = (?{(D.,,,, - Z) + D,,,,,(D,,,,, + ?“" - E)
-1/2
x [1+ cos(2o:)]}) , (12)
_ D, sin(2a) )
Y= arctan[Dcyl cos(2a) + 2Dy, + D,y — 2/dc]

(13)

The sign of the dark crescent size DRC is connected with
the sign of the denominator in Eq. (13). Finally, DCR can
be expressed as

DCR = sgn[D.y cos(2a) + 2Dy, + D, — 2/d.] * |DCR|,
(14)

where sgn represents the sign function.

These more intuitively derived formulas give numerical
results that are in agreement with the rigorous ray-tracing
approach described in Appendix A. In addition, Eq. (12)
has the important property of being identical to the basic
Eq. (1) when the cylinder power is set to 0.
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6. THE INVERSE SOLUTION: DEGREE
OF AMETROPIA CALCULATED FROM
CRESCENT PARAMETERS

Equations (13) and (14) describe the size and the tilt of the
crescent as a function of ametropia. The practitioner is
naturally more interested in the inverse solution, i.e., the
calculation of the degree of ametropia from the measured
crescent size and tilt. Obviously, the three parameters
that specify the ametropia (Dyun, Dcyi, @) cannot be derived
from two equations. Thus at least two independent pic-
tures of the crescent are required. We can achieve this
requirement, e.g., by taking two pictures in two orthogonal
orientations of the photorefractor.

We assume that the first picture is taken with a hori-
zontally aligned photorefractor, as shown in Fig. 1, and
the second with the photorefractor rotated by 90°. In the
first picture, with normal orientation, the photorefractor
sees the actual ametropia of Dyw, Dy, @. In the second
picture it sees an ametropia of Dy, Dey, (@ + 90°). As-
suming that crescents are visible in both pictures, we can
specify the two observed crescents by their sizes, DCR,
and DCR,, and tilts, y, and y,, respectively. By inserting
these four values into Egs. (12) and (13), we obtain four
equations from which the unknown quantities Dy, Dy,
and a can be determined. After a number of elementary
transformations, we finally obtain

Dey = —(2ky — 4ks%)"2, (15)
1 1
Dsph = ka + 'd_ - E-Dcyly (16)

a = sgn(DCR,) * sgn(y) * (1/2)arccos(kz/ks),  (17)

with the abbreviations

e e )
'~ d2\DCR, ' DCR,

ez( 1 1 )
ky=—|lme - =—= |
d2\DCR, DCR,

ko = sgn ko » {kz[SiH(‘}’u - n)]},
? *" | 4sin(y, + )]
1 1
k-! = 2Dcy](anh + EDcyl - E) .

One of the problems encountered in the course of the
derivation is the fact that the important signs are lost
when we take the square root. These signs had to be re-
covered afterward. For the sign of k;, we adopted the
sign rule

sgn k3
~ {—sgn(DCR,,) if sgn(DCR;) = sgn(DCR,)
~ | ~sgn(DCR) * sgn[sin(y, — v4)]* sgn(ys)
if sgn(DCR;) # sgn(DCR,)-

A few comments are added concerning the applicability
of the inverse solution:

(1) The size of the measured tilted crescents is nega-
tive when the larger part of the dark crescent lies on the
side of the flash.
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65° 45°

Fig. 5. Polar diagram of the crescent vector predicted by
Egs. (13) and (14) for an astigmatic ametropia of 0.25 DS,
—3.0 DC. Tick marks on the circumference of the circle indicate
the predicted values for the specified cylinder axes. The experi-
mental results found on the model eye are depicted by the filled
circles. The experimental results differ from the predicted
values by less than 5° and 0.4 mm.

(2) The tilt of the crescent has to be measured with
respect to the orientation of the knife edge (the orienta-
tion perpendicular to the camera-flash axis). A clock-
wise tilt in the range from 0° to 90° is associated with a
positive sign. A counterclockwise tilt is associated with a
negative sign (range: —0°-—90°).

(8) The above form of the inverse solution cannot be
applied to astigmatic ametropias with or against the rule.
In these situations both crescents have a tilt of 0°, result-
ing in undefined 0/0 division problems. In these condi-
tions the basic Egs. (2) and (3) should be used.

(4) Given a symmetric mixed astigmatism, both cres-
cents are always of equal size but opposite sign, and both
tilts are identical. In these conditions the cylinder
angle a cannot be evaluated from Eq. (17) because both &,
‘and k4 are 0. However, in these conditions, a can be sim-
ply set to y/2 if DCR;, > 0 and to (180° + y)/2 if DCR; <
0 (see Figs. 3 and 4).

(5) In all other cases we can avoid division-by-zero
problems by replacing the denominator of k3 with a small
number.

7. VERIFICATION ON A MODEL EYE

In order to verify the results predicted by the theory, we
used a photorefractor similar to Fig. 1. The photorefrac-
tor consisted of a 35-mm camera with a 150-mm lens and
a halogen lamp mounted at an eccentricity of 11.8 mm
below the horizontal borderline of an opaque mask that
covered the lower half of the lens. The model eye con-
sisted of an 80-mm achromatic lens and an adjustable,
white painted metal plate modeling the retina. The pupil
diameter was 16 mm. The model eye was adjusted to
emmetropia.?’ A refractive deficit was introduced by the
placement of trial lenses in front of the model eye. Pic-
tures of the reflex from the fundus appearing in the pupil
of the model eye were taken from a distance of 1 m. A
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series of pictures was taken at a number of mixed and
simple astigmatic errors. For every combination of trial
lenses, the axis was rotated through 180° in steps of 10°.

Figure 5 shows a comparison between experimentally
obtained data points for a trial lens of 0.25 DS, —3.0 DC
and the circle described by the crescent vector according
to the theory. All measured values are in close agree-
ment with the predicted values. In general, the tilt of the
crescent differed by less than 3° from the values predicted
by Eq. (13); the maximal deviation was 5°. The size of the
dark crescent differed by less than 0.5 mm from the val-
ues specified by Eq. (12).

8. DISCUSSION

The foregoing analysis showed that the size and the tilt of
the crescent can be predicted from five of the six param-
eters specified in Eq. (4). Equations (12) and (13) indicate
that the dark crescent size and tilt is independent of pupil
size. It has been emphasized in the literature'**' that
care must be taken to measure the pupil size when one is
estimating the refractive error with an eccentric photo-
refractor. This discrepancy arises from our use of the
dark crescent measure, i.e., the size of the pupil not filled
with light. Howland’s original Eq. (10) for the dark frac-
tion, DF,'® can be rewritten in the present notation as

DF = DCR/2R, = ¢/[2R,(d. Dy — 1)].

It can be shown from this formula that the pupil size can-
cels out when the dark crescent size, DCR, instead of the
dark fraction, DF, is used as the dependent variable and
that it is only necessary to measure the distance between
the pupil margin and the crescent border. However, as
we mentioned in Section 3, pupil size is an important con-
straint on the sensitivity and accuracy of the method.

For the derivation presented in Appendix A, we assume
that the two intersections, S, and S.;, between the knife
edge and the blur ellipse lie inside the aperture of the
camera (see Fig. 10 below). This assumption may be vio-
lated (1) in the case of a large ametropia (large blur el-
lipse), (2) in the case of a simple astigmatism (the blur
ellipse is constricted to a line that may not hit the EP at
all), and (3) when the diameter of the camera aperture is
small. In these cases the crescent size and tilt may differ
from those in the theory, or the crescent border may have
round edges or may be completely invisible. These limi-
tations are especially pronounced in photorefractors that
incorporate a small light source or a small observation
aperture as, e.g., in the ingenious, simple point-spread
retinoscope?! with which the crescent is observed with the
small EP of the human eye.

The effect of a limited EP was also observed in our model
experiments. For example, we were not able to observe the
crescent for some cylinder angles in the case of a simple
astigmatism. With an ametropia of —1.0 DS, —=3.0 DC and
a camera distance of 1 m, the tilt of the crescent showed an
orderly behavior for a cylinder axis of less than 60°: The
tilt was always equal to the cylinder axis. At an axis of
60°, however, a discontinuous transition from an easily
visible crescent to a totally dark pupil occurred.

The influence of a limited EP of the camera is illus-
trated in Fig. 6(a). An ametropia that creates a narrow
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Fig. 6. Dimensions of the EP and the light source have an im-
portant influence on the detectability and the orderly behavior of
the crescent (see text).

ellipse in the camera plane as shown in Fig. 6(a) will gen-
erate a crescent according to the theory when the ellipse is
tilted as depicted in position P1. The same ametropia
will not create a crescent at all when the ellipse is tilted as
depicted in position P2 because the blur ellipse lies out-
side the camera EP.

The effect of a limited camera EP may be overcome in
part with an extended linear light source orientated par-
allel to the knife edge instead of a point source. An ex-
tended flash tube consists of a large number of laterally
displaced light sources that create laterally displaced blur
ellipses. This setup enhances the ability to observe the
crescent in the pupil. As illustrated in Fig. 6(b), the blur
ellipse created by the centered light source, P3, does not
hit the camera EP. However, a laterally displaced portion
of the light source creates a displaced ellipse, P4, that will
generate a regular crescent according to the theory pre-
sented above.

From the foregoing analysis it is clear that a single pic-
ture of the crescent cannot effectively be used to screen
for astigmatic errors. In particular, astigmatisms with
or against the rule give rise to a crescent with a horizontal
border when a horizontally aligned camera is used, thus
making the crescent indistinguishable from a crescent
created by a purely spherical ametropia. More impor-
tantly, simple astigmatisms at an axis orthogonal to the
orientation of the photorefractor are undetectable. How-
ever the foregoing analysis shows that two pictures are
sufficient for determination of the spherical and cylindri-
cal power of the ametropia, provided that both pictures
show a measurable crescent.
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The model experiment has shown that the theory can
predict the size and the tilt of the crescent from the optical
properties of the model eye. However, one should keep in
mind that our model eye had a higher optical quality than
a normal human eye (i.e., a high-quality lens, a large pupil,
and a highly reflecting image plane). In a real screening
situation for the human eye, one will encounter additional
problems that are not covered by the geometric-optics
approach described here. Among these problems are
(1) ill-defined crescent borders owing to the shallow con-
tinuous transition at the edge of the crescent, (2) colored
crescent borders owing to chromatic aberration, and (3) a
scissor effect similar to streak retinoscopy, i.e., a visible
crescent appears on opposite sides of the pupil in a single
picture. However, the theoretical framework of photo-
retinoscopy presented here may serve as a guideline that
helps to improve the accuracy of the existing designs.

APPENDIX A

In this appendix the size and the tiit of the dark crescent
will be determined for an astigmatic eye with arbitrary
cylinder axis. It will be shown that the size and the tilt
of the crescent can be completely described in terms of
the spherical and the cylindrical power, Dy, and Dy, the
cylinder axis, a, the eccentricity of the flash, e, and
the distance of the camera, d.. Further variables in the
course of the derivation are the pupil radius, R,, and the
distance of the retina from the nodal point, d,. In order
to simplify the derivation, we will use a coordinate system
that rotates with the cylinder axis « (Fig. 1).

Step I: Dimensions of the Blur Ellipse on the Retina

An ametropic eye creates a blurred retinal image of the
flash. First we determine the radii of the blur ellipse R,,
and R,,.

Assuming an astigmatic ametropia of D, combined
with D., axis a at vertex distance 0, we can obtain the
refractive power of the eye’s optical system in the two
principal meridians by subtracting the refractive error
from the refractive power of an emmetropic eye, D.,., that
has the same length d, as the eye under consideration
(Deye = 1/d,). The resulting expressions for the refractive
power in the two principal meridians D, and D, and the
associated focal lengths f; and f, are

Dx = Deye - Dsph = ]-/f;:!
Dy = -Deye - Dsph - Dcyl = 1/)‘; (Al)

The actual value of Dy, is unimportant. D, is set to 60D
in the computations described below. Throughout the
derivations f, and f, will be used instead of Dy and Dy
From the meridional focal length f, or f,, the posi-
tions of the meridional flash images b, and b, (Fig. 7) can

lens retina

N

\/b d’

Fig. 7. Marginal rays define the radii of the blur ellipse on the
retina, R, ,.

flash
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border of the camera EP

P (e, )

Fig. 8. Retina: the extreme point P/(x,, y.) on the tilted retinal
blur ellipse is specified by a horizontal tangent.

be found:
b:_y = (l/dc + 1/}’,',)_1, (A2)

where the abbreviation b, , stands for b, and b, when f, ,
represents the meridional focal length f; or f,, respectively.
This short-form notation, which enables one to write a
single equation instead of two, will be used throughout
this appendix.

The illuminating light rays diverge behind the meridio-
nal focal points (Fig. 7) and form a blur ellipse on the
retina. The principal radii R, and R,, of the ellipse are
found from similar triangles as

Rrx,y = {b:,y - dr)Rp/bx,y- (AS)

Step II: Position of the Point on the Retinal Blur Ellipse
That Appears Lowest on the Retina

In this important step of the derivation, we calculate the
coordinates of the retinal point P,(x,, y.), which appears
lowest on the retina. This point is solely responsible for
the border of the crescent because it will be imaged
highest in the plane of the camera (see P, in Figs. 9 and 10
below). As is shown in Fig. 8, P, is specified by

(1) a slope of the tangent of —a and
2) %,y <0if0°<a<90°or x, <0 andy, >0 if
90° < a < 180°.

The general form of the slope of the tangent to an ellipse
in P, is

tan(-a) = -x,R,.%/y.R,.% . (A4)

After inserting x, and y, from the parametric form of
the ellipse,

x, = R, cos(t,), (A5)
y- = R,, sin(t,), (A6)

and elementary operations, we obtain the polar angle ¢,
of P, as

t, = arctan{R,./[R,, tan(a)]}. (AT)

Observing the sign rule described above, we find that the
coordinates of the extreme point P, are given by

Xr = SgN xl1Rr; COS(:,)' ’ (AS)
Yr = Sgn ylery Sil’l(t,.)[, (A9)

withsgn x; = —1,sgny, = -1if0° < @ < 90°0rsgn y, =
1if 90° < a < 180°.
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Step III: Position and Radii of the Blur Ellipse Generated
in the Camera Plane by the Retinal Point P.(x,, y;)

The light reflected off the fundus at P, forms a blur ellipse
in the camera plane. We determine the equation of this
blur ellipse.

Each point inside the retinal blur ellipse gives rise to a
conoid of Sturm in object space. The meridional focal
lines are situated in the meridional far-point planes at dis-
tances of a, and a, from the eye (Fig. 9):

sy = (1/d, = 1/fe,)™" = (Deye — Dyy) 7" (A10)

In the plane of the camera, the conoid of Sturm forms a
blur ellipse with principal radii R., and R.,. R and R,
can be easily obtained from similar triangles (Fig. 9):

Rt‘x.y = (ax.y - dc)Rp/ax,y- (All)

The blur ellipse generated by the extreme retinal point P,
will be centered at an off-axis point P.(x.,y.) that is de-
fined by the intersection between the chief ray through P,
(Fig. 8) and the camera plane. P, has the coordinates

x. = dex./d,,  y.=d.y./d,. (A12)

Thus the blur ellipse in the camera plane centered at P, is
described by

(x - xc)2/R0x2 + (.‘Y - yc)z/Rc‘yz =1. (A13)

Step IV: Intersection between the Blur Ellipse [Eq. (A13)]
and the Border of the Entrance Pupil of the Camera
The blur ellipse in the camera plane centered at P, may
have intersections with the knife edge of the camera EP.
The light rays passing above this borderline (hatched area
in Fig. 10) enter the camera and form the bright crescent.
Here we derive the coordinates of the intersections S,
and ch.

Given an ametropia with cylinder axis «, the border of
the EP is described in the rotated coordinate system by
the basic formula

x cos(B) + ysin(B) —e =0, (Al4)

where 8 = 90° — «is the angle between the x axis and the
perpendicular to the border of the EP (Fig. 9). After a
transformation to the normal form, we find that

y=mx +n, " (A15)
with
m = —cos(B)/sin(B),
n = efsin(B). (A16)
camera retina
Fe (Xe. ¥e) ons '
_RT_ Re

xR, ¥
L

=18,
\ P (e, ¥}
=)d, de

""-\N/

Fig. 9. Each point inside the retinal blur ellipse generates a blur
ellipse with main radii R..,, in the camera plane. The blur el-
lipse in the camera plane generated by P. is centered at P..
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S RS

border of camera EP

A

Fig. 10. Camera plane: the light rays of the blur ellipse passing
inside the EP (hatched area) create the bright crescent. The
dark crescent is greater than the pupil radius when P, lies outside
the EP.

bright crescent

Fig. 11. Pupil plane: the two points P, and P; at the rim of the
pupil that are associated with the intersections S, and S, in the
camera plane (Fig. 10) define the border of the crescent.

The x and y coordinates of the two intersections S, and
S,z between the border of the EP [Eq. (A15)] and the blur
ellipse centered at P, [Eq. (A13)] are obtained after ele-
mentary calculations as

k kz h )1;’2
Xs1,2 = _2g * (4g2 - 2 ’ (A17)
Ya,2=mx + n, (A18)

with
g = R, + m*R.},
k = 2m(n — y)R.’ — 2x.R.},
h = 2’R.* + (n — y)R.* — R’R.,".

I

No crescent appears when the square root from Eq. (A17)
is negative (no intersection).

Step V: Identification of the Marginal Rays Generating
the Crescent
The intersections S,; and S.; between the blur ellipse cen-
tered at P, and the border of the EP [Egs. (A17) and (A18)]
define two marginal rays. These rays emerge in the reti-
nal point P, (Fig. 9) and pass the pupil at the two points Py,
and P,, (Fig. 11). These two points at the rim of the pupil
define the boundary of the crescent.

In order to understand how the coordinates of these two
points can be determined, the reader should try to visualize
the optical path of the light rays that create the blur el-
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lipse depicted in Fig. 10. These light rays originate in the
retinal point P, (Fig. 9), pass through the circular pupil of
the eye, and form a conoid of Sturm outside the eye.. In
every cross section the conoid of Sturm has an ellipsoid
shape (including the two focal lines, the circular pupil, and
the circle of least confusion as special cases of the ellipse).

From the laws of projective geometry, it can easily be
shown that two given points on the boundary of the conoid
of Sturm (e.g., S.; and S.; of Fig. 10) are associated with
two conjugated points at the margin of the pupil (i.e., Pn
and P,, of Fig. 11).

The coordinates of these two points at the margin of the
pupil can be obtained mathematically by the transforma-
tion of the ellipse [Eq. (A13)] into a circle with pupil radius
R, centered at the origin.

Furthermore, one has to identify a possible sign change.
A sign change occurs, e.g., in a meridian that is myopic
with respect to the camera because the light rays are
focused and cross one another in front of the camera (see
Fig. 9):

if (Deye — 1/d.) < Dy, (A19)
if (Deye — 1/d) < D, . (A20)

sgn x; = —1
sgny; = —1

Hence the coordinates in the pupil that define the
boundary of the crescent are obtained as

Xpr,2 = SEN Xo|(Xs,2 — X)Ry/Ral, (A21)
Yp1,2 = 858N y2|(y.1,2 - yc)Rp/Rcyl- (A22)

Step VI: Size and Tilt of the Crescent

Finally, the tilt of the crescent with respect to the rotated
coordinate system can be calculated from the slope of the
line connecting the two boundary points Py, s, resulting in

¢ = amtan[(ypz - ypl)/(xpﬁ = xpl)]- (A23)

The final value for the magnitude of the tilt in the normal
horizontal coordinate system can be obtained by the addi-
tion of the cylinder axis «a (see Fig. 11):

Yy=¢+a. (A24)

In order to determine the size of the dark crescent, we
initially calculate the distance d, of the secant P,; P,; from
the origin:

d_n = [(xpl + xp2)2/4 + (ypl + yp2)2/4] vz, (A25)

The remaining problem to be solved is to determine
whether d, has to be added to or subtracted from the pupil
radius so that we can obtain the size of the dark crescent
(i.e., to decide whether the dark crescent is larger or
smaller than the pupil radius). We can answer this ques-
tion by considering the locus of the central point inside
the blur ellipse, P., as illustrated in Fig. 10. When P, lies
outside the EP of the camera, the dark crescent, formed
by the portion of the ellipse outside the EP, is larger than
the portion of the ellipse inside the EP. This indicates
that the dark crescent is larger than the pupil radius, and
d, has to be added to R,. Mathematically, this problem
can be solved by determining whether the point P.,, on the
border of the EP in the direction of P. has a larger dis-
tance from the origin than does P, (Fig. 10). The distance
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d, of P, [Eq. (A12)] from the origin is

dl = (ch + yc2)”2- [A26}

We can derive the coordinates of P., by calculating the
intersection between the line that describes the border of
the EP [Eq. (A14)] and the line connecting the origin and
P, ie,y = (y./x.)x, resulting in

Xem = €f[cos(B) + (y./xc)sin(B)],
Yem = 8/[511'1(5) + (xc/yc)CDS(ﬁ)] .

From Eqs. (A27) and (A28), the distance d; of the
boundary point P, from the origin in the direction of P, is
found as

(A27)
(A28)

d? = (xcmz + ycmz)uz- (Azg]

Finally, the size of the dark crescent can be written as

DCR = R, + sgn(d; — d1)d,. (A30)

The distance d, of the secant P, P, from the origin has
to be subtracted when the sign function sgn(d, — d,) is
negative.

Equations (A24) and (A30) completely describe the size
and the tilt of the dark crescent. In order to calculate
these values, we need Egs. (A1)-(A3), (A7)-(A12), and
(A16)-(A29).

Numerical Evaluation

The results presented in Section 4 of this paper have been
calculated on a microcomputer from analytical expres-
sions with the use of double-precision variables. Problems
arise in some special cases, e.g., when the cylinder angles
are 180° or 90° and when f, or f, are equal to d,. In the
latter case the blur ellipse is contracted into a focal line.
These problems occur because arguments in the denomi-
nator of some equations are O [see, e.g., Eq. (A10)]. In
those cases the 0 in the denominator was replaced by a
very small number (107°), a technique that yields a suffi-
ciently accurate result.
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